Solvable Groups Acting on the Line

نویسندگان

  • BY J. F. PLANTE
  • J. F. PLANTE
چکیده

Actions of discrete groups on the real line are considered. When the group of homeomorphisms is solvable several sufficient conditions are given which guarantee that the group is semiconjugate to a subgroup of the affine group of the line. In the process of obtaining these results sufficient conditions are also determined for the existence of invariant (quasi-invariant) measures for abelian (solvable) groups acting on the line. It turns out, for example, that any solvable group of real analytic diffeomorphisms or a polycyclic group of homeomorphisms has a quasi-invariant measure, and that any abelian group of C diffeomorphisms has an invariant measure. An example is given to show that some restrictions are necessary in order to obtain such conclusions. Some applications to the study of codimension one foliations are indicated. Introduction. If G is a group of homeomorphisms of the line it is reasonable to ask for a dynamic description of how G acts when reasonable restrictions are placed on G. For example, in [9] it is shown that if G is finitely generated and nilpotent then there is a G-invariant Borel measure on R which is finite on compact sets. This already says much about G. The proof is quite different from classical arguments which guarantee the existence of a finite invariant measure when an amenable group acts on a compact Hausdorff space [6] in that one uses pseudogroup properties of G rather than group properties (specifically, nonexponential growth of orbits rather than nilpotence of G). It is reasonable to determine what can be said when G is solvable, but, as pointed out in [9], solvable groups need not have invariant measures, e.g., subgroups of the affine group which contain nontrivial translations and nontrivial dilations. Such examples suggest consideration of a more general invariance property. A measure is called quasi-invariant (for G) if each element of G multiplies the measure by a nonzero constant which depends on the particular element of G. Usual Lebesgue measure is quasi-invariant for the affine group so it is reasonable to ask if every (finitely generated) solvable G has a quasi-invariant measure. It turns out that a large class of solvable groups (including polycyclic groups) acting on the line must have quasi-invariant measures but there are solvable groups which do not have such measures. An important step in the investigation of solvable groups is the consideration of infinitely generated abelian groups. If differentiability is assumed, stronger Received by the editors October 30, 1980 and, in revised form, August 3, 1982. 1980 Mathematics Subject Classification. Primary 57E25; Secondary 58F11, 58F15, 58F18.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost simple groups with Socle $G_2(q)$ acting on finite linear spaces

 After the classification of the flag-transitive linear spaces, the attention has been turned to line-transitive linear spaces. In this article, we present a partial classification of the finite linear spaces $mathcal S$ on which an almost simple group $G$ with the socle $G_2(q)$ acts line-transitively.

متن کامل

NILPOTENCY AND SOLUBILITY OF GROUPS RELATIVE TO AN AUTOMORPHISM

In this paper we introduce the concept of α-commutator which its definition is based on generalized conjugate classes. With this notion, α-nilpotent groups, α-solvable groups, nilpotency and solvability of groups related to the automorphism are defined. N(G) and S(G) are the set of all nilpotency classes and the set of all solvability classes for the group G with respect to different automorphi...

متن کامل

On nilpotent and solvable polygroups

Applications of hypergroups have mainly appeared in special subclasses. One of the important subclasses is the class of polygroups. In this paper, we study the notions of nilpotent and solvable polygroups by using the notion of heart of polygroups. In particular, we give a necessary and sufficient condition between nilpotent (solvable) polygroups and fundamental groups.

متن کامل

Some connections between powers of conjugacy classes and degrees of irreducible characters in solvable groups

‎Let $G$ be a finite group‎. ‎We say that the derived covering number of $G$ is finite if and only if there exists a positive integer $n$ such that $C^n=G'$ for all non-central conjugacy classes $C$ of $G$‎. ‎In this paper we characterize solvable groups $G$ in which the derived covering number is finite‎.‎ 

متن کامل

Classification of solvable groups with a given property

In this paper we classify all finite solvable groups satisfying the following property P5: their orders of representatives are set-wise relatively prime for any 5 distinct non-central conjugacy classes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009